Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Expert Rev Mol Diagn ; 21(2): 141-160, 2021 02.
Article in English | MEDLINE | ID: covidwho-1087610

ABSTRACT

INTRODUCTION: SARS-Cov-2 first appeared in Wuhan, China, in December 2019 and spread all over the world soon after that. Given the infectious nature ofSARS-CoV-2, fast and accurate diagnosis tools are important to detect the virus. In this review, we discuss the different diagnostic tests that are currently being implemented in laboratories and provide a description of various COVID-19 kits. AREAS COVERED: We summarize molecular techniques that target the viral load, serological methods used for SARS-CoV-2 specific antibodies detection as well as newly developed faster assays for the detection of SARS-COV 2 in various biological samples. EXPERT OPINION: In the light of the widespread pandemic, the massive diagnosis of COVID-19, using various detection techniques, appears to be the most effective strategy for monitoring and containing its propagation.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/trends , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/trends , COVID-19/diagnosis , Antibodies, Viral/immunology , Biosensing Techniques , CRISPR-Cas Systems , Clinical Laboratory Techniques , Humans , Immunoassay , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Laboratories , Radiography, Thoracic , Reagent Kits, Diagnostic , Reverse Transcriptase Polymerase Chain Reaction , Tomography, X-Ray Computed
2.
Eur J Clin Microbiol Infect Dis ; 40(2): 261-268, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-743735

ABSTRACT

According to anti-SARS-CoV-2 seroresponse in patients with COVID-19 from Croatia, we emphasised the issue of different serological tests and need for combining diagnostic methods for COVID-19 diagnosis. Anti-SARS-CoV-2 IgA and IgG ELISA and IgM/IgG immunochromatographic assay (ICA) were used for testing 60 sera from 21 patients (6 with severe, 10 moderate, and 5 with mild disease). The main clinical, demographic, and haemato-biochemical data were analysed. The most common symptoms were cough (95.2%), fever (90.5%), and fatigue and shortness of breath (42.9%). Pulmonary opacities showed 76.2% of patients. Within the first 7 days of illness, seropositivity for ELISA IgA and IgG was 42.9% and 7.1%, and for ICA IgM and IgG 25% and 10.7%, respectively. From day 8 after onset, ELISA IgA and IgG seropositivity was 90.6% and 68.8%, and for ICA IgM and IgG 84.4% and 75%, respectively. In general, sensitivity for ELISA IgA and IgG was 68.3% and 40%, and for ICA IgM and IgG 56.7% and 45.0%, respectively. The anti-SARS-CoV-2 antibody distributions by each method were statistically different (ICA IgM vs. IgG, p = 0.016; ELISA IgG vs. IgA, p < 0.001). Antibody response in COVID-19 varies and depends on the time the serum is taken, on the severity of disease, and on the type of test used. IgM and IgA antibodies as early-stage disease markers are comparable, although they cannot replace each other. Simultaneous IgM/IgG/IgA anti-SARS-CoV-2 antibody testing followed by the confirmation of positive findings with another test in a two-tier testing is recommended.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulins/blood , Male , Middle Aged , Serologic Tests
SELECTION OF CITATIONS
SEARCH DETAIL